Hormesis: Its Significance for Risk Assessment and Regulatory Agencies

Edward J. Calabrese, Ph.D.
University of Massachusetts,
School of Public Health, Amherst

Abstract

This presentation provides an assessment of hormesis, a dose-response concept that is characterized by a low-dose stimulation and a high-dose inhibition. It will trace the historical foundations of hormesis, its quantitative features and mechanistic foundations, and its risk assessment implications. It will be argued that the hormetic dose response is the most fundamental dose response, significantly outcompeting other leading dose-response models in large-scale, head-to-head evaluations used by regulatory agencies such as the EPA and FDA. The hormetic dose response is highly generalizable, being independent of biological model, endpoint measured, chemical class, physical agent (e.g., radiation) and interindividual variability. Hormesis also provides a framework for the study and assessment of chemical mixtures, incorporating the concept of additivity and synergism. Because the hormetic biphasic dose response represents a general pattern of biological responsiveness, it is expected that it will become progressively more significant within toxicological evaluation and risk assessment practices as well as having numerous biomedical applications, some of which will be emphasized in this presentation.