Using CFD in Platform Design

Eric Peterson, PhD.
Principal Consultant
Quantitative Risk Analyst
Scandpower Inc., Houston, TX

Hans Nordstand, Scandpower Inc., Houston, TX
Sverre Nodland, Scandpower Inc., Houston, TX
Joar Dalheim, Scandpower AS, Kjeller, Norway
CFD (Computational Fluid Dynamics) in Fire & Blast Assessment

Optimal Solutions Result In:

1. Increased Safety
 • Deeper understanding of potential consequences
 • Knowing in detail where the risk drivers are
 • Knowing what efforts that will best improve safety
 • Better control of the actual risk level

2. Reduced Cost
 • Mitigation efforts may more easily be proven to not be required
 • Knowing how much steel is required to meet an acceptable level
 • Reducing weight (both steel walls and passive fire protection)
Explosion Risk Example

Level of Explosion Analysis Selection

- **Level 1** – Entire Module Filled at LFL & exploded
- **Level 2** – Gas Dispersion with most credible cloud exploded
- **Level 3** – Probabilistic QRA using Multivariate CFD in Conjunction with Risk Acceptance Criteria.
\[\sum \text{Cond. Prob./yr} \] vs Explosion Overpressure (F-P)

Accumulated Explosion Conditional Probability
vs. Pressure

Design Load
Identified
for
Acceptance
Criterion of
\(10^{-4}/\text{yr}\)
Level 1: Designing the blast wall to resist the largest theoretical cloud size.

Level 2: Designing the blast wall to resist the largest realistic cloud size (estimated from gas dispersion).

Level 3: Designing the blast wall to resist the cloud size with a frequency of 10^{-4} (NORSOK Z-013).
Cost Comparison associated with 3 Explosion Levels: Blast Barrier Construction; Analysis; Sum

<table>
<thead>
<tr>
<th>Level</th>
<th>Construction Costs</th>
<th>Analysis Costs</th>
<th>USD ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The image shows a bar chart with levels and costs, but the specific values are not visible in the image.
Flammable Gas Volume depends on leak: location, direction, rate, duration; congestion & confinement; meteorological conditions.
Flammable Gas Volume depends on leak: location, direction, rate, duration; congestion & confinement; HVAC system.
LNG Pool Formation & Associated Natural Gas Dispersion

Flammable Gas Volume depends on leak: location, direction, rate, duration; physical obstructions; meteorological & surface conditions.
CFD - Flammable Liquid Spray Release

Flammable Volume depends on:
- leak: location, direction, rate, duration;
- congestion & confinement;
- flash & boiling points liquid; & surface conditions.
Blast Loads depend on plume size & location; ignition location; gas composition; congestion & confinement; pressure relief panels; deluge system.
CFD – Pool Fire on Sea Surface

Fire Loads & Smoke Development depend on pool size & location; gas composition; congestion & confinement; wind conditions.
CFD – Fire Simulation Inside Enclosed Module

Fire Loads & Smoke Development depend on leak: location and direction, rate (pool size - diffusive fire), duration; congestion & confinement, HVAC.
CFD - Dynamic Non-Linear Structural Fire Response Simulation
CFD - Dynamic Non-Linear Structural Explosion Response Simulation
CFD – Turbulence & Temperature Fields for Helicopter Operations
CFD Simulation of Outdoor Working Availability for Harsh Weather (related to Wind Chill Index)

Includes: Layout effects; meteorology; climatology (monthly wind & temperature statistics)
Concluding Remarks

• Employing CFD is Increasingly Important in Effective Risk Management for Offshore & Onshore Facilities.

• Effective Means to Improve Insight of New Hazards & Potential Consequences Where New Technologies are Applied.
The Lloyd's Register Group works to enhance safety and approve assets and systems at sea, on land and in the air.

For more information:

Eric Peterson
713-405-7822
epe@scandpower.com

www.scandpower.com
www.lr.org