Theoretical and Experimental Methods for the Evaluation of Reactive Chemical Hazards

Aldeeb, A. A., W.J. Rogers, and M.S. Mannan
Mary Kay O’Connor Process Safety Center

Chemical Engineering Department
Texas A&M University
College Station TX 77843-3122
Email: mannan@tamu.edu

ABSTRACT

Evaluation of reactive chemical hazards is critical for the design and operation of safer chemical plant processes. Much effort is needed for experimental techniques to measure thermal reactivity of chemical systems. Studying all the various reaction pathways experimentally, however, is very expensive. Therefore, it is essential to employ simplified screening tools to reduce the number of experiments and to identify the most hazardous pathways.

A systematic approach is presented for the evaluation of reactive chemical hazards. This approach is based on a combination of numerical computational methods and experimental thermal analysis techniques. Numerical computational methods are used to predict reaction stoichiometries, thermodynamics and kinetics, which will help to exclude thermodynamically non-feasible and non-hazardous reaction pathways. The experimental techniques are used to evaluate potentially hazardous systems for more accurate thermodynamic and kinetics parameters or to replace inadequate numerical methods. This approach employing theoretical and experimental analyses was used to evaluate the decomposition reaction of di-tert-butyl peroxide (DTBP) in toluene.